AIRFIELD SEIZURE OVERVIEW:

The critical missions during airfield seizure are Assessment, Clearance, and Repair.

Assessment:
- The pilot determines the location for the first drop of BLM equipment and the approach for the initial drop of COTS equipment.
- The pilot determines the location for the second drop of BLM equipment and the approach for the initial drop of COTS equipment.
- The pilot determines the location for the third drop of BLM equipment and the approach for the initial drop of COTS equipment.
- The pilot determines the location for the fourth drop of BLM equipment and the approach for the initial drop of COTS equipment.

Clearance:
- The CFS is responsible for determining the location for the first drop of LARP equipment and the approach for the initial drop of COTS equipment.
- The CFS is responsible for determining the location for the second drop of LARP equipment and the approach for the initial drop of COTS equipment.
- The CFS is responsible for determining the location for the third drop of LARP equipment and the approach for the initial drop of COTS equipment.
- The CFS is responsible for determining the location for the fourth drop of LARP equipment and the approach for the initial drop of COTS equipment.

Repair:
- The Sapper company recommends the use of robotics for rapid assessment and speed.
- The Sapper company recommends the use of mobility (motorbike, gator, other) for rapid assessment and survey.
- The Sapper company recommends the use of C-130 tire pressure as 80 psi.
- The Sapper company recommends the use of crusted soil: Take readings every 2 inches to a depth of 24 inches.
- The Sapper company recommends the use of an Airfield Assessment Team (AAT) to coordinate their work.
- The Sapper company recommends the use of a Standard Testing Team (SST) to test the road surface strength.
- The Sapper company recommends the use of a Security Team to ensure the safety of the FLS perimeter.
- The Sapper company recommends the use of an Airfield Assessment Matrix with timeline.

THE OPERATION:

1. **Mission:**
 - Battalion TF seizes and clears a Flight Landing Strip (FLS) in a forced-entry operation to facilitate air/land operations.

2. **Theaters:**
 - Assumption Mitigation: No more than one piece of LARP equipment arrives in the airhead unserviceable.
 - The AI then can be used to estimate a CBR value, as shown in the graph above. This correlation has not been used to estimate AI values from the CBR curve because these generally would not be conservative.
 - The conservatism is necessary because there is no unique relationship between these measurements and their shearing resistance. CBR is calculated by dividing the unit load required to force a 6" spall that will require repair.

3. **Team Clear Security Team Tasks:**
 - Security of the FLS perimeter & LARP.
 - Security Team Tasks:
 - Team Clear Security Team Tasks:
 - Use Talon 3 robots or the most up-to-date robotic system
 - Each PL is the C2 for his platoon, however, one PL is overall in charge of the clearance team if more than one. The 240B gunner and the RTO stay with the PL in the middle of the echelon behind the last man.
 - Overlapping to ensure there is no dead space between detection heads. This is critical on dirt or soft surfaces.
 - Team Rapper:
 - Recovery damage to the FLS by landing using the latest polymers and RRR kits available for repair and maintenance.

4. **Clearing Formations:**
 - Clearing Formations: A formation is assumed to be safe if there is no indication of explosive hazards (EH).
 - Clearing Formations: A formation is assumed to be safe if there is no indication of explosive hazards (EH).
 - Clear any spoils or a major upheaval in the surface of the FLS with mechanical detection. Also, Visual detection methods are adequate on all hard surfaces—concrete or pavement. Always update the location of all equipment in this area.
 - Clearing Formations: A formation is assumed to be safe if there is no indication of explosive hazards (EH).

5. **Sapper Team:**
 - Sapper Team:
 - Team Clear Security Team Tasks:
 - Use Talon 3 robots or the most up-to-date robotic system
 - Each PL is the C2 for his platoon, however, one PL is overall in charge of the clearance team if more than one. The 240B gunner and the RTO stay with the PL in the middle of the echelon behind the last man.
 - Overlapping to ensure there is no dead space between detection heads. This is critical on dirt or soft surfaces.
 - Visual detection methods are adequate on all hard surfaces—concrete or pavement. Always update the location of all equipment in this area.
CLEARING FORMATIONS (CONT.):

b. This method is designed for situations where it is advantageous to reduce the size of a formation. It can be used to clear obstacles in areas where direct travel is not possible and is not a direct replacement for the use of separate obstacles, as this method is not dependent on the use of fences.

c. As the first platoon (A) encounters an obstacle, it marks, then clears a path in order to bypass the obstacle. Platoon (B) may then clear the obstacle if it is advantageous to do so. After the obstacle is cleared, platoon (B) moves toward platoon (A) and bypasses platoon (A) if it is advantageous to do so.

d. After the obstacle is cleared, platoon (B) moves up to the bypassed obstacle and begins clearing it.

LIGHT AIRFIELD REPAIR PACKAGE (LARP):

Airborne LARP:

4. The LARP does not begin its repairs until the area surrounding the damage is clear of all obstacles. The repair area is marked, then cleared using a power shovel, drag tractor, or equivalent equipment to remove debris and obstacles from the area. Once the repair area is clear, the equipment is moved to the crater and the repairs begin. As soon as an adequate piece of equipment is ready to begin repairs and the area is clear, the vehicle is moved to the crater.

5. Spall field. Cluster of spalls within an area requiring repair. May include 10 to several hundred spalls. A spall field is a repair area that requires the repair of multiple obstacles, and the repair process is designed to accommodate multiple obstacles.

6. Spray the remaining product.

7. Helicopters can land immediately after spraying the area. Fixed-wing aircraft are parked parallel to a taxi-way, the clearance should be 50 feet. If aircraft are parked parallel parking rows are utilized, the taxi-way between rows should be the wing span + 60 feet; if aircraft are parked with wingtip to wingtip, the minimum clearance should be 100 feet.

MAXIMUM OPERATING STRIP (MOS):

5. FLS surface thickness: 6 inches.

6. Drive the MTVR to opposite side of helipad.

7. Tree stumps: Must be cut within 2 inches of the ground. Outward clearance requirements are based on the size of the aircraft, and the minimum outward clearance is 100 feet.

The length of the MOS will depend on the length of the aircraft and the mission requirements, the size of the MOS, the nature and availability, and the estimated time required. The FLS may be less than 1 mile in length and the MOS may be shorter than the FLS.

The FLS has multiple uses, from more than a single C-130.

MINIMIZING DUST ON HELIPADS – CH-47 AND UH-60 SERIES:

1. MTVR (medium tactical vehicle replacement) for LARP equipment; petroleum, oil, lubricants (POL) products; gas-powered hand tampers; surface cleaning and dust suppression.

2. Repair Compaction. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified.

3. Rocks: in traffic areas rocks must be removed, embedded, or interlocked in a manner that will prevent displacement when traversed by aircraft. A concrete cover is designed for the rapid and safe establishment of landing zones for

4. Surface Conditions:

5. FLS surface thickness: 6 inches.

6. Drive the MTVR to opposite side of helipad.

7. Tree stumps: Must be cut within 2 inches of the ground. Outward clearance requirements are based on the size of the aircraft, and the minimum outward clearance is 100 feet.

The length of the MOS will depend on the length of the aircraft and the mission requirements, the size of the MOS, the nature and availability, and the estimated time required. The FLS may be less than 1 mile in length and the MOS may be shorter than the FLS.

The FLS has multiple uses, from more than a single C-130.

MINIMIZING DUST ON HELIPADS – CH-47 AND UH-60 SERIES:

1. MTVR (medium tactical vehicle replacement) for LARP equipment; petroleum, oil, lubricants (POL) products; gas-powered hand tampers; surface cleaning and dust suppression.

2. Repair Compaction. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified. The strength of the backfill, debris, or subgrade materials must be verified.

3. Rocks: in traffic areas rocks must be removed, embedded, or interlocked in a manner that will prevent displacement when traversed by aircraft. A concrete cover is designed for the rapid and safe establishment of landing zones for