ZCSolutions	TCM-ATIS System Interface Services (SIS)

TECHNICAL APPROACH DESIGN AND DEVELOPMENT OF RESTFUL WEB SERVICES

TRADOC Capabilities Manager -
Army Training Information System (TCM-ATIS)
System Interface Services (SIS)

Contract: W911S0-12-C-0036

10 DECEMBER 2012

Prepared for:
U.S. Army Training Support Center (ATSC)
Attn: TCM-ATIS
Building 3308
Fort Eustis, VA 23604-5166

Submitted by:

ZCSolutions, LLC
1600 Tysons Boulevard, Suite 1150
McLean, VA 22102

REVISION RECORD

Version	Description	Date	Submitter
1.0	Initial draft	10 Dec 2012	B. Craig
1.1	Provide more details.	31 Jan 2013	B. Craig
			
			
			
			
			
			
			
			
			
			

Table of Contents
1	Purpose	5
2	Goal	5
3	Representational State Transfer (REST)	5
3.1	HTTP Request Methods	5
3.1.1	GET	5
3.1.2	PUT	5
3.1.3	POST	6
3.1.4	DELETE	6
3.1.5	HEAD	6
3.1.6	OPTIONS	6
3.2	Safety and Idempotencey	6
3.3	REST Principles	6
4	RESTful Resource-Oriented Architecture	7
4.1	The Resource	7
4.2	The Resource URI	7
4.3	The Resource Representations	7
4.4	The Links between	7
5	Service Design	7
5.1	Getting Started	7
6	Client	8
7	Rules	8
7.1	URI Format	8
7.2	URI Path Design	8
7.3	URI Query Design	9
7.4	Request Methods	9
7.5	Response Methods	9
7.6	HTTP Headers	9
7.7	Representation Design	9
8	References and Additional Resources	10

[bookmark: _Toc350121530]Purpose
This document serves as the TCM-ATIS technical approach and Technology Transfer guide for all new and existing SIS developers and any participating clients in the design, development, and implementation of RESTful web services following a Resource Oriented Architecture (ROA) set of principles.
[bookmark: _Toc350121531]Goal
[bookmark: _GoBack]The goal of this document is to help SIS developers understand how to design and implement RESTful web services following the TCM-ATIS approach. By following this guide, developers should gain sufficient knowledge and understanding on how to produce RESTful web services and corresponding clients quickly and consistently in varying programming languages.
[bookmark: _Toc350121532]Representational State Transfer (REST)
Representational State Transfer (REST) describes an architectural style commonly used in the HTTP context however it is not limited to the HTTP protocol. With regard to its use in the HTTP context it uses a standard vocabulary complemented by as set of constraints and guided by a hand full of principles. There are differing implementations of “RESTful” web services that are technically “RESTful” however are merely hybrid combinations of XML-RPC or misuse of the HTTP methods as defined by their intended purpose. This document intends to clarify some of this confusion regarding what it actually means to be considered a web services as “RESTful” within the HTTP context while setting guidance for service design for SIS developers.
RESTful web services are implemented using HTTP and the principles of REST. A RESTful web service is a collection of resources defined by:
1. The base URI
2. A set of supported operations defined by HTTP Methods
3. The internet media type consumed and produced by the web service
4. The API must be hypertext driven.
[bookmark: _Toc350121533]HTTP Request Methods
REST uses the well defined HTTP request methods; GET, PUT, POST, DELETE, HEAD, and OPTIONS to retrieve, create, and manipulate resources. Use of these HTTP methods indicates to the server how the state of a resource is to be handled.
[bookmark: _Toc350121534]GET
The HTTP GET method is used to retrieve a representation of a resource. HTTP verb tunneling should not be allowed. For example the GET method should not delete, create, or update any resource.
[bookmark: _Toc350121535]PUT
To create a new resource or modify an existing resource the HTTP PUT method is used.
NOTE:
To determine the appropriate usage between PUT and POST, the client uses PUT when it is in charge of deciding what the new URI resource should be when it is created and the client uses POST when the server is in charge of assigning a new URI to the resource being created.
[bookmark: _Toc350121536]POST
The POST method is used create a new resource. Typically the client only needs to know the parent URI resource in which the server creates the resource under the parent. The Server response is usually HTTP Status 201 (“Created”) with the location header containing the URI of the newly created resource.
[bookmark: _Toc350121537]DELETE
HTTP DELETE is used to delete an existing resource.
[bookmark: _Toc350121538]HEAD
 The HTTP HEAD method is used to retrieve a metadata representation of the resource to include the HTTP headers. It is identical to the GET method without a message body in the response or the representation itself.
[bookmark: _Toc350121539]OPTIONS
The HTTP OPTIONS method provides information about the request and response options a client is allowed to do to a resource and the resource representations that are available.
[bookmark: _Toc350121540]Safety and Idempotencey
The HTTP GET and HTTP HEAD methods are considered “Safe” when used correctly. Since the request does not change any resource state. The request can be issued multiple times causing no harm.

HTTP PUT and HTTP DELETE methods are idempotent. The idea behind idempotence is that there are no side effects issuing the same request multiple times. DELETE a resource and it is gone. Issue another DELETE and it is still gone the resource state does not change. The same with PUT, resending the PUT does not change the resource state. HTTP GET and HEAD also share this property.

The HTTP POST method is neither safe nor idempotent. This method is the most problematic method for REST. Usually POST is used to create or modify resources and should be carefully implemented to prevent duplicates since it is not idempotent.
[bookmark: _Toc350121541]REST Principles
The REST principles are
1. Addressability
2. Uniform Interface
3. Statelessness
4. Representations
5. Hypermedia as the Engine of Application State (HATEOAS)
[bookmark: _Toc350121542]RESTful Resource-Oriented Architecture
Resource Oriented Architecture is a specific set of rules for the design and implementation of RESTful web services. Resource-oriented architecture places the importance on the resource itself and is strictly web oriented. The RESTful architecture is not restricted to resources over the HTTP protocol. By combining the method information restricted to the HTTP method, as used in RESTful architectures, with the scoping information in the URI described by the Resource-Oriented Architecture provides a powerful technique consisting of four concepts.
[bookmark: _Toc350121543]The Resource
A resource is any item, object, idea, or thing that is important enough to be referenced in of it-self.
[bookmark: _Toc350121544]The Resource URI
A resource has to have at least one Uniform Resource Identifier (URI). The URI is the name and the address of the resource.
[bookmark: _Toc350121545]The Resource Representations
The message body of an HTTP request or HTTP response is the representation of that resource. These representations can be of one or more formats such as, but not limited to, XML, JSON, and HTML.
[bookmark: _Toc350121546]The Links between
A key principle of REST is the idea of resources and their associated links. Providing links to other resources or links to a different state of a resource help users navigate through an application. Links also facilitate the discovery of new resources. Links between refers to the potential transition of a resource between states. These transitions are links to the applicable state.
[bookmark: _Toc350121547]Service Design
[bookmark: _Toc350121548]Getting Started
First things first where should one start. Below serves a step-by-step guide to follow when planning a new service. Lay out a plan, use a white board, and bounce your plan against other developers. Don’t add more to your service than required. Start small; it can get unwieldy real quick.
1. Understand the requirement
2. Determine the source data set available to work with
3. Separate the data set into resources
a. For each kind of resource:
i. Name the resource with a URI – name it with a noun
ii. Make the resource available - expose it via HTTP method(s)
iii. Determine/design the representation format(s) accepted by the client
iv. Determine/design the representation format(s) served to the client
v. Integrate this resource into existing resources using hypermedia links
vi. Consider what’s supposed to happen - send appropriate response code
vii. Consider what might go wrong – send appropriate response code
4. URI Design – When resources are named well the API is intuitive and easy to use.
Each resource should have a unique URI and its best that the URI adequately describes the resource.
5. URI templates
6. Nouns
7. Plural Noun for collections
8. Singular Noun for a single resource
9. Query parameters
10. Examples
a. JAVA
b. Ruby
c. .NET
[bookmark: _Toc350121549]Client
HTTP Headers
Authentication
HTTP Methods	
	Verbs
Resources
Representations
HTTP Response Codes
Links between
	Pagination
	HATEOS – Hypertext Engine of

[bookmark: _Toc350121550]Rules
The following rules are listed in the “REST API Design Rulebook by Mark Masse’ (O’Reilly), Copyright 2012 Mark Masse’, 978-1-449-31050-9.” They are not all inclusive, however TCM-ATIS deems important to establish as best practices.
[bookmark: _Toc350121551]URI Format
	Rule:	A forward slash (/) must be used to indicate a hierarchical relationship
Rule: 	A trailing slash (/) should not be included in a URI
	Rule:	Hyphens (-) should be used to improve the readability of a URI
	Rule:	Underscores (_) should not be used in a URI
Rule:	Lowercase letters should be preferred in URI paths
[bookmark: _Toc350121552]URI Path Design
Rule: 	A singular noun should be used for resource names
Rule:	A plural noun should be used for collections
Rule: 	CRUD function names should not be used in a URI
[bookmark: _Toc350121553]URI Query Design
Rule:	The query component of a URI may be used to filter collections
Rule:	The query component of a URL should be used to paginate a collection
[bookmark: _Toc350121554]Request Methods
Rule:	GET and POST must not be used to tunnel other request methods
Rule:	GET must be used to retrieve a representation of a resource
Rule:	HEAD should be used to retrieve response headers
Rule:	PUT must be used to both insert and update a stored resource
Rule:	PUT must be used to update mutable resources
Rule:	POST must be used to create a new resource in a collection
Rule:	DELETE must be used to remove a resource from its parent
[bookmark: _Toc350121555]Response Methods
Rule:	200 (“OK”) should be used to indicate nonspecific success
Rule:	200 (“OK”) should not be used to indicate errors in the response body
Rule: 	201 (“Created”) must be used to indicate successful resource creation
Rule:	202 (“Accepted”) must be used to indicate successful start of an asynchronous action
Rule:	204 (“No Content”) should be used when the response body is intentionally empty
Rule:	301 (“Moved Permanently”) should be used to relocate resources
Rule:	302 (“Found”) should not be used
Rule:	303 (“See Other”) should be used to refer the client to a different URI
Rule:	304 (“Not Modified”) should be used to preserve bandwidth
Rule:	307 (“Temporary Redirect”) should be used to tell clients to resubmit the request to another URI
Rule:	400 (“Bad Request”) may be used to indicate nonspecific failure
Rule:	401 (“Unauthorized”) must be used when there is a problem with the clients credentials
Rule:	403 (“Forbidden”) should be used to forbid access regardless of authorization state
Rule:	404 (“Not Found”) must be used when a client’s URI cannot be mapped to a resource
Rule:	405 (“Method Not Allowed”) must be used when the HTTP method is not supported
Rule:	406 (“Not Acceptable”) must be used when the requested media type cannot be served
Rule:	409 (“Conflict”) should be used to indicate a violation of resource state
Rule:	412 (“Precondition Failed”) should be used to support conditional operations
Rule:	415 (“Unsupported Media Type”) must be used when the media type of a request’s payload cannot be processed
Rule:	500 (“Internal Server Error”) should be used to indicate API malfunction
[bookmark: _Toc350121556]HTTP Headers
Rule:	Content-Type must be used
Rule:	Content-Length should be used
Rule: 	Location must be used to specify the URI of a newly created resource
[bookmark: _Toc350121557]Representation Design
Rule:	A consistent form should be used to represent links
Rule:	A consistent form should be used to represent media type formats
Rule:	A consistent form should be used to represent errors

[bookmark: _Toc350121558]References and Additional Resources
REST API Design Rulebook, Mark Masse, 2011, O’Reilly Media, Inc.
RESTful Web Services, Leonard Richardson and Sam Ruby, 2008, O’Reilly Media, Inc.
RESTful Web Services Cookbook, Subbu Allamaraju, 2010, O’Reilly Media, Inc.
REST in Practice: Hypermedia and Systems Architecture, Jim Webber, et al., 2010, O’Reilly Media,
Inc.
APIs: A Strategy Guide, Daniel Jacobson; Greg Brail; Dan Woods, 2011, O'Reilly Media, Inc.

10 December 2012	Technical Approach Design And Development of RESTFul Web Services	7
image1.png

image2.png

image3.png
/S

ZCSolutions

image4.png

image5.png

image6.png

