ZCSolutions	TCM-ATIS System Interface Services (SIS) Security

SYSTEM INTERFACE SERVICES (SIS)
SECURITY

TRADOC Capabilities Manager -
Army Training Information System (TCM-ATIS)
System Interface Services (SIS)

Contract: W911S0-12-C-0036

25 FEBRUARY 2013

Prepared for:
U.S. Army Training Support Center (ATSC)
Attn: TCM-ATIS
Building 3308
Fort Eustis, VA 23604-5166

Submitted by:

ZCSolutions, LLC
1600 Tysons Boulevard, Suite 1150
McLean, VA 22102

REVISION RECORD

Version	Description	Date	Submitter
1.0	Initial draft	25 Feb 2013	B. Craig
			
			
			
			
			
			
			
			
			
			
			

Table of Contents
1	Purpose	4
2	Security Overview	4
3	Transport Layer	4
3.1	Server Certificates	4
3.2	Client Certificates	4
4	Authentication	4
4.1	AKO Single Sign-On (SSO)	4
4.2	B2B - HTTP Basic Authentication	5
5	Authorization	5
6	Roles	6
7	Application Security	6

[bookmark: _Toc350432405]Purpose
This document defines the TCM-ATIS System Interface Services (SIS) Security requirements for the development of SIS services. The application security requirements identified in this document are intended to be used by all developers designing services seeking adoption of existing and candidate services into the SIS Service Portfolio.

This document is NOT intended to eliminate, replace, or downgrade existing IA security standards, requirements or policies.
[bookmark: _Toc350432406]Security Overview
One of the core objectives of SIS is to expose Application Programming Interfaces (API) for use by systems and end users while ensuring protected resources are authenticated for access, the confidentiality and integrity of data is maintained, and the prevention of unauthorized or malicious clients from access or abuse of resources or data.
[bookmark: _Toc350432407]Transport Layer
The Transport Layer Security (TLS) for all SIS services will be over Secured Socket Layer (SSL). Usage of HTTPS and TLS is required to meet the requirements of Information Assurance (IA) standards. Mixing of HTTP and HTTPS may introduce a security weakness and will not be supported in any SIS Service.
[bookmark: _Ref350009463][bookmark: _Toc350432408]Server Certificates
All application servers must obtain DOD issued X.509 certificates and abide by IA standards and policies. Exchanging of server certificates between two interfacing servers are not required however the DoD root Certificate Authority and issuing intermediary certificates must be installed in the application server certificate trust store.
[bookmark: _Toc350432409]Client Certificates
If an application server is a client to another SIS service then the same certificate requirement for the client is required as indicated in the Server Certificates section. If the client is an individual person and the service supports AKO SSO then the individual will be required to present their valid PKI certificate most likely stored on their Common Access Card (CAC). SIS Servers should not store individual client PKI certificates.
[bookmark: _Toc350432410]Authentication
There are two types of service Authentication mechanisms currently supported in SIS, AKO Single Sign-On (SSO) and Business to Business (B2B) using HTTP Basic Authentication over HTTPS. Custom authentication mechanisms may be supported on a case by case basis.
[bookmark: _Toc350432411]AKO Single Sign-On (SSO)
Web based applications requiring individual user login must implement AKO SSO according to Army policy. SIS services invoked by SSO enabled client have two options for authentication; Authentication by SSO or authentication by proxy. The authentication by SSO is achieved by placing the service endpoint within an existing AKO SSO protected URI path. Requests for the service would be intercepted by the Site Minder plug-in to validate the user credentials and upon successful authentication the HTTP Header “AKOID” with the value of the username will be passed to the application for authorization.
Authentication by proxy refers to the SSO enabled client calling a local server side application to create a B2B service request on behalf of the SSO client.
Services authenticated by AKO should return an HTTP 403 Forbidden status code if the account is not authorized access to the requested URI.

NOTE: The installation and configuration of AKO SSO is out of the scope of this document. Refer to the AKO SSO documentation located here.
[bookmark: _Toc350432412]B2B - HTTP Basic Authentication
HTTP Basic Authentication is a simple authentication mechanism that uses the HTTP Standard protocol. Typically, HTTP Basic Authentication will be used between two servers. For services that provide applications that require individual permission behind an HTTP browser the AKO SSO authentication mechanism will be used. The exchange of credentials between a client and a server are achieved statically through HTTP headers.
HTTP Basic Authentication specifies that client request must contain an HTTP Authorization header on every HTTP request. The HTTP Authorization header contains a base 64 encoded value of the username and password separated by a colon. For example, if the username is ‘test_user’ and the password is ‘secret123’ the base 64 encoded value would be dGVzdF91c2VyOnNlY3JldDEyMw=. The complete header would appear as:
Authorization: Basic dGVzdF91c2VyOnNlY3JldDEyMw==
If the client request does not contain an HTTP Authorization Header the service will respond with an HTTP 401 Unauthorized Status code indicating client must provide credentials and resend the request.

If the client sends the HTTP Authorization header the service will decode, validate, and verify authorization the service URI. An HTTP 401 Unauthorized Status code will be returned if the account credentials are invalid.

An HTTP 403 Forbidden status code will be returned if the account is not authorized access to the requested URI.
[bookmark: _Toc350432413]Authorization
Authorization to use SIS services are governed by service roles. These service roles have specific permissions. The roles granted to the service participant are based on the type of service and the need of the participant. The authorization technique for services is the same for any application. It is based on the premise of three bits of data, (principal, resource, and permission), where the principal is the person or system which is granted permission to a particular resource. This alludes to the ability to have services generate a cacheable access control list for each principal.
[bookmark: _Toc350432414]Roles
The consumption of services within SIS is governed by a set of access roles. These roles follow the CRUD concept for Create, Read, Update, and Delete along with the idea of message traffic flow of consumers and producers where Consumers “Get” and Producers “Create”. The concept of a Domain Producer and Domain Consumer can also be supported depending on the nature of the service; a domain role may be used to categorize data by its value in such a way to restrict other users from creating, retrieving, updating, or deleting. For example, a “Domain Consumer” role may be applied to a service user where values of the role are categorized by school code. That service user is restricted to viewing school code XXX, YYY, and ZZZ. Any other Domain values are restricted. The use of a Domain role is dependent on the service. A service user may be granted more than one role per service however authorization to consume one service does not automatically authorize consumption of any other SIS service.
The following table defines the roles currently being used within the SIS APIs.
	Role Name
	Description
	HTTP Method Access

	Consumer
	Consumer role allows read permission
	GET, HEAD, OPTIONS

	Producer
	Producer role allows create/update/delete permission
	POST, PUT, DELETE

	DomainConsumer
	Domain specific Consumer role allows read permission
	GET, HEAD, OPTIONS

	DomainProducer
	Domain specific Producer role allows create/update/delete permission
	POST, PUT,DELETE

	WS-Manager
	 Administrative access permission
	TRACE

[bookmark: _Toc350432415]Application Security
Application security for RESTful Services is no different than any other web application. Developers should be vigilant and ensure the confidentiality and integrity.
· Validate all input parameters. Accept good input and reject the bad.
· Project from SQL injection
· Encode output
· Display generic error messages
· Log errors and exceptions
· Validate JSON and XML data
· Restrict HTTP verb tunneling. For example the GET method should not delete resources
· Be aware of GET ALL. Use pagination when generating collections with many sub-resources
· Return HTTP 403 Forbidden when resource authorization insufficient

25 February 2013	System Interface Services	3
image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

