

Student Information Services (SIS)

Reservation Service

Web Service Description Document
Army Training Information Architecture-Migrated (ATIA-M)

System Sustainment Services
Contract: W911S0-11-C-0024
30 May 2012
[image: image1.png]
[image: image2.png]
Prepared for:

U.S. Army Training Support Center (ATSC)

Attn: TCM-ATIS

Building 3308

Fort Eustis, VA 23604-5166

Submitted by:
[image: image3.png]
ZCSolutions, LLC
1600 Tysons Boulevard, Suite 1150
McLean, VA 22102
[image: image4.png][image: image5.png][image: image6.png]
Revision Record
	Version
	Comment
	Date
	Author

	1.0
	Initial draft
	30 May 2012
	J. Strickland, B. Craig,
J. Campbell

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents
41
Purpose

42
Overview

43
Standards

54
Web Service Requirements

64.1
Service Requests

74.2
Service Response

84.3
Unique Key Identification

84.4
Security

84.4.1
Transport Security

84.4.2
Authentication

84.4.3
Message-Level Security

94.4.4
WS-Addressing

94.5
Error Handling

95
Reservation Service Web Services Description

95.1
Web Services Description Language

105.2
WSDL Style

105.3
Reservation Service WSDL Operations

115.3.1
Add Class

145.3.2
Update Class

165.3.3
Delete Class

175.3.4
Add Reservations

195.3.5
Update Reservation

215.3.6
ATRRS Student Data

235.3.7
Error Message

245.3.8
ARISS Data File

255.3.9
RECBASS Data File

266
Business Rules

267
Service Objects

1 Purpose

This document specifies the Army Training Information System (ATIS) Student Information Services (SIS) Reservation Service Web Service Interface Specification, which governs the interface between SIS and any external system electing to participate in a Service Oriented Architecture (SOA) to provide various student services. This document describes the SIS Reservation Service Web Service operations, employed standards, and schemas.
2 Overview
The SIS Reservation Service provides a modernized interface for receiving legacy RITMS messages. The RITMS system receives messages from ATRRS, ARISS, and RECBASS. To facilitate the replacement of RITMS functionality by DTMS, the SIS Reservation Service captures these messages for consumption by DTMS. Reservation information is made available through common, secure, standards-based Web services.
The Reservation Service shall be implemented as an end point at DTMS. The SIS shall implement a Reservation Service client for sending messages to DTMS via the Reservation Service end point.
NOTE: The SIS Update Reservation Service is the mechanism for return messages.

3 Standards

The interface shall implement all Web services following the Web Services Interoperability Technology (WSIT) and Web Services-Interoperability (WS-I) as much as possible to ensure cross-platform interoperability. WSIT provides interoperability between Java and Windows Communication Foundation .NET 3.5 Web service implementations.

· Web Services Description Language (WSDL) version 1.1

· Simple Object Access Protocol (SOAP) version 1.2
· WS-Interoperability (WS-I) Basic Profile version 1.1

· WS-Addressing version 1.0

· WS-BaseFaults version 1.2

· WS-Security X.509 Token Profile version 1.0

Web Service Interoperability Technology (WSIT)

· WS-MetadataExchange
· WS-ReliableMessaging
· WS-ReliableMessaging Policy
· WS-Security
· WS-SecurityPolicy
· WS-Trust
· WS-SecureConversation
· WS-Policy
· WS-PolicyAttachment
The WSDL shall conform to the WS-I Basic Profile standard version and shall support WSIT. The WSDL shall be implemented to support SOAP 1.2 using document/literal wrapped parameter style. The interface shall adhere to the Federated Repositories for Education (FRED) specifications as much as possible. The xsd:dateTime data types shall conform to ISO 8601 format.
4 Web Service Requirements
The goal is to establish an Enterprise Service Oriented Architecture (ESOA) infrastructure that provides for and supports numerous Web services in an interoperable manner to ensure reliable delivery of data while maintaining security, integrity, and confidentiality.

SIS shall establish a secure Web service to provide data to the customer. This interface shall consist of a REQUEST-RESPONSE Web service with a SOAP 1.2 message transmitted over HTTPS and controlled by WS-Reliable Messaging and WS-SecureConversation; Mutual Certificate Authentication is used by way of the X.509 token profile that is defined in the WSDL WS-Security Policy extension.

Each request and response shall be SOAP 1.2 conformant sent over HTTPS using the document/literal wrapped parameter style. SOAP headers shall contain WS-SecureConversation, WS-Security X.509 token, WS-Reliable, and WS-Addressing elements. Web service requirements shall be contained in the WSDL defined by WS-Policy expressions.
NOTE: This service uses a shared schema with the SIS Update Reservation Service. The SIS Reservation Service implements the operations for the message types given in Figure 1:
[image: image7.png]
Figure 1. SIS Reservation Service message types.

4.1 Service Requests

The request shall comply with message constructs that are defined by WSIT and WS-I standards (see Figure 2). The enterprise service shall send only one request per message. The transactionID shall be a Universally Unique Identifier (UUID). SystemID values will be agreed upon between communicating parties to be specified in their respective Memorandum of Agreement (MOA) or System Interface Agreement (SIA) (i.e., the Reservation Service client that is implemented by SIS uses “SIS” as the systemID for request messages, while the services use “DTMS” as the systemID for response messages).
The service request shall be in the form of a valid message type for the service that contains the data being transmitted. One service operation corresponds to each message type. Valid message types are described in more detail in section 7 of this document. In the event of an error, refer to section 4.5 of this document.
[image: image8.jpg]
[image: image9.png]
[image: image10.png]
Figure 2. Reservation service request messages.
4.2 Service Response
The response shall comply with message constructs that are defined by WSIT and WS-I standards (see Figure 3). Responses shall include the transactionID of the request with an updated date time stamp to indicate receipt of the request message for the operation. In the event of an error, refer to section 4.5 in this document.

[image: image11.jpg]
Figure 3. Standard response.
4.3 Unique Key Identification

The transactionID is a unique identifier for each message that is sent in the request. This transactionID is used in both request and response messages. The response object shall respond with the same transactionID as in the request. This unique identifier may be used for logging, traceability, and/or auditing purposes should issues arise.

The transactionID is a UUID/ or Globally Unique Identifier (GUID) that is formatted in its canonical form, which consists of 32 hexadecimal digits displayed in five groups separated by hyphens in the form 8-4-4-4-12, for a total of 36 characters. The value is case insensitive.
4.4 Security
4.4.1 Transport Security

The mode of transport for this interface shall be over secure Hypertext Transfer Protocol Secure (HTTPS) using Secure Sockets Layer (SSL). Registered digital certificates are required when running HTTPS with SSL, and it is the responsibility of each participant to obtain them. Self-signed certificates are not authorized for use in this interface.
4.4.2 Authentication
The authentication mechanism that is used in this interface shall be by Mutual Certificates using X.509 certificates. Each server shall trust each other’s valid SSL certificates and must be configured for both the server and the client side. All other requests shall be rejected.

4.4.3 Message-Level Security
Message-level protection is achieved through the use of Mutual Certificates to ensure authentication, integrity, and confidentiality. Message headers are signed, and message bodies are encrypted.
4.4.4 WS-Addressing

The WS-Addressing requirement is implied by the use of WS-Reliable Messaging and shall be implemented by both service implementer and client.
4.5 Error Handling

Business rule violations shall throw the ReservationFault defined in the WSDL and shall provide a description of the error in the base fault. Any other run-time errors shall be container-thrown SOAP faults. (See Figure 4.)
[image: image12.jpg]
Figure 4. Base fault.
NOTE: This is different from the ATRRS ERROR MESSAGE, which is used to relay an ATRRS processing error, not an error in the transmission or receipt of a message.
5 Reservation Service Web Services Description
The SIS Reservation Service shall provide the operations for sending legacy RITMS messages to DTMS from SIS. Message data shall be sent in the service request. The service response shall be a standard response that acknowledges receipt of the message.
5.1 Web Services Description Language

The WSDL can be accessed here: https://interfaces.atsc.army.mil/wsdl/sis/dars/ReservationService.wsdl. See also the Reservation Service Specification document.
NOTE: This is not an end point.

5.2 WSDL Style

The WSDL style shall be document/literal and wrapped using SOAP 1.2 binding. This WSDL and future releases shall maintain the use of WSIT and WS-I compliancy to ensure interoperability.

The WSDL is comprised of the following operation(s): if a ONE-WAY message exchange pattern (MEP) is used, then the implementer’s container is not required to respond at all, to include a fault message; thus, ONE-WAY MEP shall NOT be used.
5.3 Reservation Service WSDL Operations
The ReservationService service is the SIS Web service for providing reservation data. It provides the functionality to receive SOAP-formatted XML messages from ATRRS, as well as binary data files from RECBASS and ARISS. Each message type is passed using an operation for the specific message. (See Figure 5.)
[image: image13.jpg]
Figure 5. SIS Reservation Service WSDL.
5.3.1 Add Class
The addClass operation is a REQUEST-RESPONSE MEP to be implemented by the service implementer of the WSDL. This operation allows a client to pass an ATRRS ADDCLASS message using the request that is defined in the addClassInput message of the WSDL. The response shall be a standard response that is defined in the addClassOutput message of the WSDL.
The addClass operation shall be called upon receipt of an ATRRS ADDCLASS message by SIS and subject to any other restrictions in any MOA or SIA. The service implementer may overrule clients’ execution frequency.
5.3.1.1 Add Class Input
The addClass operation call shall contain the addClass payload, which consists of the data elements for an ATRRS ADDCLASS message. The input objects are wrapped with a single element that conforms to WSIT standards. The transactionID and time-stamp elements can be used for message-tracking purposes. (See Figure 6.)
[image: image14.jpg]
Figure 6. Add Class input.
5.3.1.2 Add Class Output
The implementer of the addClass WSDL shall respond to the request with the addClassResponse payload, which consists of a standard response structure (see section 4.2). The standard response object is wrapped with a single element that conforms to WSIT standards. The standard response object can be used for message-tracking purposes. (See Figure 7.)
[image: image15.jpg]
Figure 7. Add Class output.
5.3.2 Update Class

The updateClass operation is a REQUEST-RESPONSE MEP to be implemented by the service implementer of the WSDL. This operation allows a client to pass an ATRRS UPDATECLASS message using the request that is defined in the updateClassInput message of the WSDL. The response shall be a standard response that is defined in the updateClassOutput message of the WSDL.

The updateClass operation shall be called upon receipt of an ATRRS UPDATECLASS message by SIS and subject to any other restrictions in any MOA or SIA. The service implementer may overrule clients’ execution frequency.

5.3.2.1 Update Class Input

The updateClass operation call shall contain the updateClass payload, which consists of the data elements for an ATRRS UPDATECLASS message. The input objects are wrapped with a single element that conforms to WSIT standards. The transactionID and time-stamp elements can be used for message-tracking purposes. (See Figure 8.)
[image: image16.jpg]
Figure 8. Update Class input.

5.3.2.2 Update Class Output
The implementer of the updateClass WSDL shall respond to the request with the updateClassResponse payload, which consists of a standard response structure (see section 4.2). The standard response object is wrapped with a single element that conforms to WSIT standards. The standard response object can be used for message-tracking purposes. (See Figure 9.)
[image: image17.jpg]
Figure 9. Update Class output.

5.3.3 Delete Class

The deleteClass operation is a REQUEST-RESPONSE MEP to be implemented by the service implementer of the WSDL. This operation allows a client to pass an ATRRS DELETECLASS message using the request that is defined in the deleteClassInput message of the WSDL. The response shall be a standard response that is defined in the deleteClassOutput message of the WSDL.

The deleteClass operation shall be called upon receipt of an ATRRS DELETECLASS message by SIS and subject to any other restrictions in any MOA or SIA. The service implementer may overrule clients’ execution frequency.

5.3.3.1 Delete Class Input

The deleteClass operation call shall contain the deleteClass payload, which consists of the data elements for an ATRRS DELETECLASS message. The input objects are wrapped with a single element that conforms to WSIT standards. The transactionID and time-stamp elements can be used for message-tracking purposes. (See Figure 10.)
[image: image18.jpg]
Figure 10. Delete Class input.

5.3.3.2 Delete Class Output
The implementer of the deleteClass WSDL shall respond to the request with the deleteClassResponse payload, which consists of a standard response structure (see section 4.2). The standard response object is wrapped with a single element that conforms to WSIT standards. The standard response object can be used for message-tracking purposes. (See Figure 11.)
[image: image19.jpg]
Figure 11. Delete Class output.

5.3.4 Add Reservations

The addReservation operation is a REQUEST-RESPONSE MEP to be implemented by the service implementer of the WSDL. This operation allows a client to pass an ATRRS ADDRESERVATION message using the request that is defined in the addReservationInput message of the WSDL. The response shall be a standard response that is defined in the addReservationOutput message of the WSDL.

The addReservation operation shall be called upon receipt of an ATRRS ADDRESERVATION message by SIS and subject to any other restrictions in any MOA or SIA. The service implementer may overrule clients’ execution frequency.

5.3.4.1 Add Reservation Input

The addReservation operation call shall contain the addReservation payload, which consists of the data elements for an ATRRS ADDRESERVATION message. The input objects are wrapped with a single element that conforms to WSIT standards. The transactionID and time-stamp elements can be used for message-tracking purposes. (See Figure 12.)
[image: image20.jpg]
Figure 12. Add Reservation input.

5.3.4.2 Add Reservation Output
The implementer of the addReservation WSDL shall respond to the request with the addReservationResponse payload, which consists of a standard response structure (see section 4.2). The standard response object is wrapped with a single element that conforms to WSIT standards. The standard response object can be used for message-tracking purposes. (See Figure 13.)
[image: image21.jpg]
Figure 13. Add Reservation output.

5.3.5 Update Reservation

The updateReservation operation is a REQUEST-RESPONSE MEP to be implemented by the service implementer of the WSDL. This operation allows a client to pass an ATRRS UPDATERESERVATION message using the request that is defined in the updateReservationInput message of the WSDL. The response shall be a standard response that is defined in the updateReservationOutput message of the WSDL.

The updateReservation operation shall be called upon receipt of an ATRRS UPDATERESERVATION message by SIS and subject to any other restrictions in any MOA or SIA. The service implementer may overrule clients’ execution frequency.

5.3.5.1 Update Reservation Input

The updateReservation operation call shall contain the updateReservation payload, which consists of the data elements for an ATRRS UPDATERESERVATION message. The input objects are wrapped with a single element that conforms to WSIT standards. The transactionID and time-stamp elements can be used for message tracking purposes. (See Figure 14.)
[image: image22.jpg]
Figure 14. Update Reservation input.

5.3.5.2 Update Reservation Output
The implementer of the updateReservation WSDL shall respond to the request with the updateReservationResponse payload, which consists of a standard response structure (see section 4.2). The standard response object is wrapped with a single element that conforms to WSIT standards. The standard response object can be used for message-tracking purposes. (See Figure 15.)
[image: image23.jpg]
Figure 15. Update Reservation output.

5.3.6 ATRRS Student Data

The atrrsStudentData operation is a REQUEST-RESPONSE MEP to be implemented by the service implementer of the WSDL. This operation allows a client to pass an ATRRS STUDENTDATA message using the request that is defined in the atrrsStudentDataInput message of the WSDL. The response shall be a standard response that is defined in the atrrsStudentDataOutput message of the WSDL.

The atrrsStudentData operation shall be called upon receipt of an ATRRS STUDENTDATA message by SIS and subject to any other restrictions in any MOA or SIA. The service implementer may overrule clients’ execution frequency.

5.3.6.1 ATRRS Student Data Input

The atrrsStudentData operation call shall contain the atrrsStudentData payload, which consists of the data elements for an ATRRS STUDENTDATA message. The input objects are wrapped with a single element that conforms to WSIT standards. The transactionID and time-stamp elements can be used for message-tracking purposes. (See Figure 16.)
[image: image24.jpg]
Figure 16. ATRRS Student Data input.

5.3.6.2 ATRRS Student Data Output
The implementer of the atrrsStudentData WSDL shall respond to the request with the atrrsStudentDataResponse payload, which consists of a standard response structure (see section 4.2). The standard response object is wrapped with a single element that conforms to WSIT standards. The standard response object can be used for message-tracking purposes. (See Figure 17.)
[image: image25.jpg]
Figure 17. ATRRS Student Data output.

5.3.7 Error Message

The errorMessage operation is a REQUEST-RESPONSE MEP to be implemented by the service implementer of the WSDL. This operation allows a client to pass an ATRRS ERRORMESSAGE message using the request that is defined in the errorMessageInput message of the WSDL. The response shall be a standard response that is defined in the errorMessageOutput message of the WSDL.

The errorMessage operation shall be called upon receipt of an ATRRS ERRORMESSAGE message by SIS and subject to any other restrictions in any MOA or SIA. The service implementer may overrule clients’ execution frequency.

5.3.7.1 Error Message Input

The errorMessage operation call shall contain the errorMessage payload, which consists of the data elements for an ATRRS ERRORMESSAGE message. The input objects are wrapped with a single element that conforms to WSIT standards. The transactionID element can be used for message-tracking purposes. (See Figure 18.)
[image: image26.jpg]
Figure 18. Error Message input.
The ERRORMESSAGE transaction is used in both SIS Reservation Service and SIS Update Reservation Service Web services to relay a processing error between the originating system and the destination system. The transactionID, message type, and requesting systemID are key values in the original message that resulted in the processing error.

For example:

<errorMessage>

 <ATRRSAIMS SYSTEMID="ATRRS">

 <ERRORMESSAGE>

 <TRANSID>c31d091d-5a72-47a9-852b-86d5c72de6f4</TRANSID>

 <REQUESTINGSYSTEMID>DTMS</REQUESTINGSYSTEMID>

 <MESSAGETYPE>UPDATESTUDENTSTATUS</MESSAGETYPE>

 <ERRDESCRIPTION>INVALID QUOTASOURCE FOR CLASS</ERRDESCRIPTION>

 </ERRORMESSAGE>

 </ATRRSAIMS>

</errorMessage>

Here, the originating message came from DTMS via SIS, and ATRRS was unable to process it for the reason given in the ERRDESCRIPTION element. ATRRS sends an error message back to DTMS (via SIS) which contains the corresponding transactionID, the message type, and the systemID of the originating system.

5.3.7.2 Error Message Output
The implementer of the errorMessage WSDL shall respond to the request with the errorMessageResponse payload, which consists of a standard response structure (see section 4.2). The standard response object is wrapped with a single element that conforms to WSIT standards. The standard response object can be used for message-tracking purposes. (See Figure 19.)
[image: image27.jpg]
Figure 19. Error Message output.

5.3.8 ARISS Data File

The arissDataFile operation is a REQUEST-RESPONSE MEP to be implemented by the service implementer of the WSDL. This operation allows a client to pass an ARISS data file (known as a 4050 file) using the request that is defined in the arissDataFileInput message of the WSDL. The response shall be a standard response that is defined in the arissDataFileOutput message of the WSDL.

The arissDataFile operation shall be called upon receipt of an ARISS data file by SIS and subject to any other restrictions in any MOA or SIA. The service implementer may overrule clients’ execution frequency.

5.3.8.1 ARISS Data File Input

The arissDataFile operation call shall contain the arissDataFile payload, which consists of the binary data file sent from ARISS. The input objects are wrapped with a single element that conforms to WSIT standards. The transactionID and time-stamp elements can be used for message-tracking purposes. (See Figure 20 and Figure 31.)
[image: image28.jpg]
Figure 20. ARISS Data File input.

5.3.8.2 ARISS Data File Output
The implementer of the arissDataFile WSDL shall respond to the request with the arissDataFileResponse payload, which consists of a standard response structure (see section 4.2). The standard response object is wrapped with a single element that conforms to WSIT standards. The standard response object can be used for message-tracking purposes. (See Figure 21.)
[image: image29.jpg]
Figure 21. ARISS Data File output.

5.3.9 RECBASS Data File

The recbassDataFile operation is a REQUEST-RESPONSE MEP to be implemented by the service implementer of the WSDL. This operation allows a client to pass a RECBASS data file (known as a Day 3 file) using the request that is defined in the recbassDataFileInput message of the WSDL. The response shall be a standard response that is defined in the recbassDataFileOutput message of the WSDL.

The recbassDataFile operation shall be called upon receipt of a RECBASS data file by SIS and subject to any other restrictions in any MOA or SIA. The service implementer may overrule clients’ execution frequency.

5.3.9.1 RECBASS Data File Input

The recbassDataFile operation call shall contain the recbassDataFile payload, which consists of the binary data file that is sent from RECBASS. The input objects are wrapped with a single element that conforms to WSIT standards. The transactionID and time-stamp elements can be used for message-tracking purposes. (See Figure 22 and Figure 32.)
[image: image30.jpg]
Figure 22. RECBASS Data File input.

5.3.9.2 RECBASS Data File Output
The implementer of the recbassDataFile WSDL shall respond to the request with the recbassDataFileResponse payload, which consists of a standard response structure (see section 4.2). The standard response object is wrapped with a single element that conforms to WSIT standards. The standard response object can be used for message-tracking purposes. (See Figure 23.)
[image: image31.jpg]
Figure 23. RECBASS Data File output.

6 Business Rules
This document is not intended to set the triggering events and the frequency of data to be pushed or pulled by either the service implementer or the client. These types of requirements should be specified in their respective MOAs or SIAs.
Respective parties shall not intentionally throw any message processing exceptions. Acceptable errors are those faults that violate XSD and WSDL conformance. Standard response messages indicate receipt of a valid input message. Processing of the message content shall be completed after acknowledging receipt of the message. The ERRORMESSAGE operation shall be used to indicate processing exceptions. As best practice, batch processing is recommended.

7 Service Objects

The following list of objects is not all-inclusive of the SIS Reservation Service; rather, this list serves as a high-level breakdown of the major schema objects that are contained in the service for clarity. For additional details, see the Reservation Service Specification document.
The ADD CLASS object contains information for adding a new class (see Figure 24).
[image: image32.jpg]
Figure 24. ADD CLASS data.

The UPDATE CLASS object contains data for updating an existing class (see Figure 25).
[image: image33.jpg]
Figure 25. UPDATE CLASS data.

The DELETE CLASS object contains data for removing an existing class (see Figure 26).
[image: image34.jpg]
Figure 26. DELETE CLASS data.

The ADD RESERVATION object contains data for a new student reservation in a class (see Figure 27).
[image: image35.jpg]
Figure 27. ADD RESERVATION data.

The UPDATE RESERVATION object contains data for updating an existing student reservation in a class (see Figure 28).
[image: image36.jpg]
Figure 28. UPDATE RESERVATION data.

The ATRRS STUDENT DATA object contains demographic data for a student (see Figure 29).
[image: image37.jpg]
Figure 29. ATRRS STUDENT DATA data.

The ERROR MESSAGE object contains data for relaying an ATRRS processing error (see Figure 30).
[image: image38.jpg]
Figure 30. ERROR MESSAGE data.

The fourtyFifty object contains data for relaying an ARISS binary data file along with a transactionID and time stamp (see Figure 31).
[image: image39.jpg]
Figure 31. fourtyFifty data.

The recbassDataFile object contains data for relaying a RECBASS binary data file along with a transactionID and time stamp (see Figure 32).
[image: image40.jpg]
Figure 32. day3 data.

PAGE

