CourseMaster Web Service
Description Document
Army Training Information Architecture-Migrated (ATIA-M)

System Sustainment Services
Contract: W911S0-11-C-0024
8 March 2012
[image: image1.png]
[image: image2.png]
Prepared for:

U.S. Army Training Support Center (ATSC)

Attn: TCM-ATIS

Building 3308

Fort Eustis, VA 23604-5166

Submitted by:
[image: image3.png]
ZCSolutions, LLC
1600 Tysons Boulevard, Suite 1150
McLean, VA 22102
[image: image4.png][image: image5.png][image: image6.png]
Revision Record
	Version
	Description
	Date
	Submitter

	1.0
	Initial draft
	12 April 2010
	B. Craig

	1.1
	Updated into new template, removed WSDL/Schema sections and updated links to new Specification document.
	7 March 2012
	J. Campbell

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents
41
Purpose

42
Overview

43
Standards

54
Interface Road Map

54.1
Implementation Phase 1

64.2
Implementation Phase 2

65
Web Service Requirements

65.1
Security

65.1.1
Transport Security

65.1.2
Authentication

65.1.3
Message Level Security

75.1.4
Secure Conversation

75.2
Reliability

75.2.1
WS-Reliable Messaging

75.2.2
WS-Addressing

76
Web Services Description Language

86.1
WSDL Style

86.2
WSDL Operations

86.3
putCourseMaster

96.3.1
PutCourseMaster Request

96.3.2
putCourseMaster Response

106.4
getCourseMaster

106.4.1
getCourseMaster Request

106.4.2
getCourseMaster Response

116.5
putCAD

116.5.1
putCAD Request

116.5.2
putCAD Response

126.6
getCAD

126.6.1
getCAD Request

136.6.2
GetCAD Response

136.7
putPOI Request

146.7.1
putPOI Response

146.8
getPOI

156.8.1
getPOI Request

156.8.2
getPOI Response

166.9
getCourseList

166.9.1
getCourseList Request

166.9.2
getCourseList Response

177
Unique Key Identification

177.1
Transaction Id

187.2
Course Filter

187.3
CAD Filter

187.4
POI Filter

198
Business Rules

198.1
CourseMaster Service Requests

198.2
CourseMaster Service Response

198.3
CourseMaster Service Objects

208.3.1
Transaction Id Object

208.3.2
CourseMaster Object

208.3.3
CAD Object

208.3.4
POI Object

209
Error Handling

2110
Sequence Diagrams

1 Purpose

This document specifies the Training Developer Capability (TDC) Web Service interface specification that governs the interface between ATIA and any external System electing to participate in a Service Oriented Architecture (SOA) providing various student services. This document also describes the TDC Web Service operations and its schemas and describes the sequence flow of the entire process.
2 Overview

ATIA is the Army Training Information portal that provides various services for current and prospective students. ATIA presents a consolidated view of a student’s current and historical training record gathered from multiple LMS vendors. This enables seamless participation in a training event with disparate LMS vendors and external training systems. Currently, ATIA provides catalog search capabilities, enrollment into LMS courses, the ability to take training, the ability to post a student’s official Military Training record with the applicable completion results, and a single point of entry for the student to access self-development and directed DL training. TDC is the component that provides Training Developers at Army schools the tools to manage individual and collective training, support the analysis, design, and development of task-based training products such as: Soldier Training Publications, Training Support Packages, Combined Arms Training Strategies, Programs of Instruction, and Courses. TDC is integrated with the Army Training Information Architecture (ATIA) and other key Army training management systems. The TDC interoperates with the ATIA and provides Army Training Developers the tools to manage individual and collective training, support, analysis, design, and development of task-based training products such as: Soldier Training Publications, Training Support Packages, Combined Arms Training Strategies, Programs of Instruction, and Courses.
3 Standards

The interface shall implement all Web Services following the Web Services Interoperability Technology (WSIT) and WS-I as much as possible to ensure cross platform interoperability. WSIT provides interoperability between Java and Windows Communication Foundation .NET 3.5 web service implementations.

Web Services Description Language (WSDL) version 1.1

Simple Object Access Protocol (SOAP) version 1.1

WS-Interoperability (WS-I) Basic Profile version 1.1

WS-Addressing version 1.0

WS-BaseFaults version 1.2

WS-Security X.509 Token Profile version 1.0

Web Service Interoperability Technology (WSIT)

· WS-MetadataExchange
· WS-ReliableMessaging
· WS-ReliableMessaging Policy
· WS-Security
· WS-SecurityPolicy
· WS-Trust
· WS-SecureConversation
· WS-Policy
· WS-PolicyAttachment
The WSDL shall conform to the Web Services-Interoperability (WS-I) Basic Profile standard version and support WSIT.

The WSDL shall be implemented supporting SOAP 1.1 using document/literal wrapped parameter style.

The interface shall adhere to the Federated Repositories for Education (FRED) specifications as much as possible.

The xsd:dateTime data types shall conform to ISO 8601 format.

4 Interface Road Map

The goal is to establish an Enterprise Service Oriented Architecture (ESOA) infrastructure that provides for and supports numerous web services in an interoperable manner ensuring reliable delivery of data while maintaining security, integrity, and confidentiality.

4.1 Implementation Phase 1

Establish a secure Web Service providing data to the customer. This interface shall consist of a REQUEST-RESPONSE WebService with a SOAP 1.1 message transmitted over HTTPS controlled by WS-Reliable Messaging and WS-SecureConversation using Mutual Certificate Authentication by way of the X.509 Token Profile defined in the WSDL WS-Security Policy extension.

The put request shall contain the course master data and the response shall be an acknowledgment in receipt of the data.

The get request data shall contain query metadata and the response shall be the course master data associated with the request query.

4.2 Implementation Phase 2

Enhance the Web Service where needed. Support message level encryption. Modify the WSDL adding additional operations where needed. Phase 2 has not been planned at this time; however, both agencies concur there is mutual benefit to continue to modernize and mature the interface.

5 Web Service Requirements
Each request and response shall be SOAP 1.1 conformant sent over HTTPS using the document/literal wrapped parameter style. SOAP headers shall contain WS-SecureConversation, WS-Security X.509 token, WS-Reliable, and WS-Addressing elements. Web Service requirements shall be contained in the WSDL defined by WS-Policy expressions.
5.1 Security

5.1.1 Transport Security

Mode of transport for this interface shall be over secure Hypertext Transfer Protocol Secure (HTTPS) using Secure Sockets Layer (SSL). Registered digital certificates are required when running secure HTTP transport (HTTPS) using Secure Sockets Layer (SSL) and it is the responsibility of each participant to obtain them. Self-signed certificates are not authorized for use in this interface.
5.1.2 Authentication
The authentication mechanism used in this interface shall be by Mutual Certificates using X.509 certificates. Each server shall trust each other’s valid SSL certificates and must be configured for both server and client sides. All other requests shall be rejected.
5.1.3 Message Level Security
Message-level protection is achieved through the use of Mutual Certificates ensuring authentication, integrity, and confidentiality.

5.1.4 Secure Conversation
A secure conversation shall be maintained by implementing the use of the X.509 Certificate Token Profile specification. The WS-SecureConversation general framework consists of WS-Security, WS-SecurityPolicy, and WS-Trust.

5.2 Reliability

5.2.1 WS-Reliable Messaging
WS-Reliable Messaging defines a message protocol to identify, track, and manage messages between two parties in the event of software, system, or network failures. It provides reliable end-to-end assurance of delivery, eliminates lost or mishandled messages, eliminates duplication, and maintains delivery order if required. It is defined by WS-Reliable Messaging Policy expressions attached to the WSDL.

5.2.2 WS-Addressing
WS-Addressing requirement is implied by the use of WS-Reliable Messaging and shall be implemented by both service implementer and client.
6 Web Services Description Language

The WSDL can be accessed in the CourseMaster-ws Specification.

[image: image7.jpg]
Figure 1. CourseMaster service WSDL.
6.1 WSDL Style

The WSDL style shall be document/literal wrapped using SOAP 1.1 binding. This WSDL and future releases shall maintain the use of WSIT and WS-I Compliancy ensuring interoperability.
6.2 WSDL Operations
The WSDL is comprised of the following operation(s). If a ONE-WAY Message Exchange Pattern (MEP) were used the implementer’s container is not required to response with anything including faults, thus ONE-WAY MEP shall NOT be used.

6.3 putCourseMaster

The putCourseMaster operation is a REQUEST-RESPONSE Message Exchange Pattern (MEP) to be implemented by the service implementer of the WSDL. This operation will allow a client to pass course master data for input or update to service implementer of the WSDL. The client role in the interface pushes the data to the service implementer using the request defined in the “PutCourseMasterInput” message of the WSDL.

The putCourseMaster operation shall be called upon at the discretion of the client following guidelines under section 8 of this document and any other restrictions in any Memorandum of Agreement (MOA) or System Interface Agreement (SIA). The service implementer may overrule clients’ execution frequency.

6.3.1 PutCourseMaster Request

The putCourseMaster operation call shall contain the “putCourseMaster” payload consisting of one courseMaster element which contains all components of a particular course master product where the status changed to “Approved” and a transaction Id structure. The courseMaster and transaction Id objects are wrapped with a single “putCourseMaster” element conforming to WSIT standards. The transaction Id object can be used for message tracking purposes. Refer to the CourseMaster-ws Specification for schema object details.
[image: image8.jpg]
Figure 2. putCourseMaster request.
6.3.2 putCourseMaster Response

The implementer of the CourseMasterService WSDL shall respond to the putCourseMaster request with the “putCoursMasterResponse” using the messageId contained in the “putCourseMaster” request and setting the date time stamp to the current or processed date time. This response message confirms that the message sent was successfully received.

The service implementer of the “putCourseMaster” operation shall not throw the “CourseMasterFault” in attempts at processing the data after it has been successfully received. Future error handling in the processing of data once received needs to be further defined.

[image: image9.png]
Figure 3. putCourseMaster response payload.
6.4 getCourseMaster

The getCourseMaster operation is a REQUEST-RESPONSE Message Exchange Pattern (MEP) to be implemented by service implementer of the WSDL. This operation will allow a client to pull course master metadata based on the request filter parameters defined in the “GetCourseMasterInput” message of the WSDL.

The getCourseMaster operation shall be called upon at the discretion of the client following guidelines under section 8 and any other restrictions in any Memorandum of Agreement (MOA) or System Interface Agreement (SIA). The service implementer may over rule clients’ execution frequency.
6.4.1 getCourseMaster Request

The getCourseMaster operation call shall contain the “getCourseMaster” request payload consisting of a course filter and transaction Id structure. The course filter consists of proponent school code, course number and course version. The course filter and transaction Id objects are wrapped with a single “getCourseMaster” element conforming to WSIT standards. If version is unknown, the client may call the getCourseList operation to discover unknown courses and versions within a proponent.
[image: image10.png]
Figure 4. getCourseMaster request.
6.4.2 getCourseMaster Response

The implementer of the CourseMaster Service WSDL shall respond to the getCourseMaster request with the “getCourseMasterResponse” consisting of one course master element which contains all components of a particular course master product where the status is “Approved” and a transaction Id structure. The messageId of the transaction Id structure shall be the same messageId contained in the request and setting the date time stamp to the current or processed date time. Refer to the CourseMaster-ws Specification for schema object details.

[image: image11.jpg]
Figure 5. getCourseMaster response.
6.5 putCAD

The putCAD operation is a REQUEST-RESPONSE Message Exchange Pattern (MEP) to be implemented by the service implementer of the WSDL. This operation will allow a client to pass course administrative data (CAD) for input or update to service implementer of the WSDL. The client role in the interface pushes the data to the service implementer using the request defined in the “PutCADInput” message of the WSDL.

The putCAD operation shall be called upon at the discretion of the client following guidelines under section 8 of this document and any other restrictions in any Memorandum of Agreement (MOA) or System Interface Agreement (SIA). The service implementer may overrule clients’ execution frequency.

6.5.1 putCAD Request

The putCAD operation call shall contain the “putCAD” request payload consisting of one CAD element which contains all components of a particular course administrative data product where the status changed to “Approved” and a transaction Id structure. The CAD and transaction Id objects are wrapped with a single “putCAD” element conforming to WSIT standards. The transaction Id object can be used for message tracking purposes. Refer to the CourseMaster-ws Specification for schema object details.
[image: image12.jpg]
Figure 6. putCAD request.
6.5.2 putCAD Response

The implementer of the CourseMasterService WSDL shall respond to the putCAD request with the “putCADResponse” using the messageId contained in the “putCAD” request and setting the date time stamp to the current or processed date time. This response message confirms that the message sent was successfully received.

The service implementer of the “putCAD” operation shall not throw the “CourseMasterFault” in attempts at processing the data after it has been successfully received. Future error handling in the processing of data once received needs to be further defined.
[image: image13.png]
Figure 7. putCAD response.
6.6 getCAD

The getCAD operation is a REQUEST-RESPONSE Message Exchange Pattern (MEP) to be implemented by service implementer of the WSDL. This operation will allow a client to pull course administrative data (CAD) metadata based on the request filter parameters defined in the “GetCADInput” message of the WSDL.

The getCAD operation shall be called upon at the discretion of the client following guidelines under section 8 of this document and any other restrictions in any Memorandum of Agreement (MOA) or System Interface Agreement (SIA). The service implementer may over rule clients’ execution frequency.
6.6.1 getCAD Request

The getCAD operation call shall contain the “getCAD” request payload consisting of a course filter and transaction Id structure. The CAD filter consists of proponent school code, course number, version, and phaseId. The CAD filter and transaction Id objects are wrapped with a single “getCAD” element conforming to WSIT standards. If version is unknown, the client may call the getCourseList operation to discover unknown courses and versions within a proponent.

[image: image14.png]
Figure 8. getCAD request.
6.6.2 GetCAD Response

The implementer of the CourseMaster Service WSDL shall respond to the getCAD request with the “getCADResponse” consisting of one course administrative data (CAD) element which contains all components of a particular CAD product where the status is “Approved” and a transaction Id structure. The messageId of the transaction Id structure shall be the same messageId contained in the request and setting the date time stamp to the current or processed date time. Refer to the CourseMaster-ws Specification for schema object details.

[image: image15.jpg]
Figure 9. getCAD response.
6.7 putPOI Request

The putPOI operation call shall contain the “putPOI” request payload consisting of one POI element which contains all components of a particular program of instruction (POI) product where the status changed to “Approved” and a transaction Id structure. The POI and transaction Id objects are wrapped with a single “putPOI” element conforming to WSIT standards. The transaction Id object can be used for message tracking purposes. Refer to the CourseMaster-ws Specification for schema object details.

[image: image16.jpg]
Figure 10. putPOI request.
6.7.1 putPOI Response

The implementer of the CourseMasterService WSDL shall respond to the putPOI request with the “putPOIResponse” using the messageId contained in the “putPOI” request and setting the date time stamp to the current or processed date time. This response message confirms that the message sent was successfully received.

The service implementer of the “putPOI” operation shall not throw the “CourseMasterFault” in attempts at processing the data after it has been successfully received. Future error handling in the processing of data once received needs to be further defined.

[image: image17.png]
Figure 11. putPOI response.
6.8 getPOI

The getPOI operation is a REQUEST-RESPONSE Message Exchange Pattern (MEP) to be implemented by service implementer of the WSDL. This operation will allow a client to pull program of instruction (POI) metadata based on the request filter parameters defined in the “GetPOIInput” message of the WSDL.

The getPOI operation shall be called upon at the discretion of the client following guidelines in section 8 of this document and any other restrictions in any Memorandum of Agreement (MOA) or System Interface Agreement (SIA). The service implementer may over rule clients’ execution frequency.
6.8.1 getPOI Request

The getPOI operation call shall contain the “getPOI” request payload consisting of a course filter and transaction Id structure. The POI filter consists of proponent school code, course number, course version, and phaseId. The POI filter and transaction Id objects are wrapped with a single “getPOI” element conforming to WSIT standards. If version is unknown, the client may call the getCourseList operation to discover unknown courses and versions within a proponent.

[image: image18.png]
Figure 12. getPOI request.
6.8.2 getPOI Response

The implementer of the CourseMaster Service WSDL shall respond to the getPOI request with the “getPOIResponse” consisting of one program of instruction (POI) element which contains all components of a particular POI product where the status is “Approved” and a transaction Id structure. The messageId of the transaction Id structure shall be the same messageId contained in the request and setting the date time stamp to the current or processed date time. Refer to the CourseMaster-ws Specification for schema object details.

[image: image19.jpg]
Figure 13. getPOI response.
6.9 getCourseList

The getCourseList operation is a REQUEST-RESPONSE Message Exchange Pattern (MEP) to be implemented by service implementer of the WSDL. This operation will allow a client to pull a list of course numbers associated with course master data, course administrative data (CAD), or program of instruction (POI) products based on the request filter parameters defined in the “GetCourseListInput” message of the WSDL.

The getCourseList operation shall be called upon at the discretion of the client following guidelines under section 8 of this document and any other restrictions in any Memorandum of Agreement (MOA) or System Interface Agreement (SIA). The service implementer may over rule clients’ execution frequency.
6.9.1 getCourseList Request

The getCourseList operation call shall contain the “getCourseList” request payload consisting of a course list filter and transaction Id structure. The course list filter consists of course type, proponent school code, fiscal year, optional course number, and optional phaseId. The course type can be one of “CourseMaster,” “CAD,” or “POI.” The course list filter and transaction Id objects are wrapped with a single “getCourseList” element conforming to WSIT standards.

[image: image20.png]
Figure 14. getCourseList request.
6.9.2 getCourseList Response

The implementer of the CourseMaster Service WSDL shall respond to the getCourseList request with the “getCourseListResponse” consisting of a list of zero, one or more courses having an associated product in an “Approved” status and a transaction Id structure. The messageId of the transaction Id structure shall be the same messageId contained in the request and setting the date time stamp to the current or processed date time. Refer to the CourseMaster-ws Specification for schema object details.
[image: image21.png]
Figure 15. getCourseMaster response.
7 Unique Key Identification
Key identifiers are indicated in the transaction ID, course filter, CAD filter, and POI filter objects.

7.1 Transaction Id
The messageId is a unique identifier for each message sent in the request. This messageId is used in both request and response messages. The response object shall respond with the same messageId as in the request.

This unique identifier may be used for logging, traceability and/or auditing purposes in the event issues arise. The transaction Id object is comprised of a composite case insensitive element messageId and dateTimeStamp as follows:

XML payload snipped. Namespace removed for readability.

…

<transactionId>
 <messageId>76d4e037-6906-4480-9d7c-c23bf3ce30f1</messageId>

 <dateTimeStamp>2008-09-10T00:23:40-05:00</dateTimeStamp>

 </transactionId>

…
messageId is a Universally Unique Identifier (UUID)/ Globally Unique Identifier (GUID) formatted in its canonical form consisting of 32 hexadecimal digits, displayed in 5 groups separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters. The value is case insensitive.
dateTimeStamp is of type xsd:dateTime i.e. format 2008-08-29T21:32:52
7.2 Course Filter

The course filter is a complex type consisting of proponent, course number, and version which is used in the getCourseMaster operation to uniquely retrieve the metadata for a single course master record. A response to the getCourseMaster request will consist of one course master element which consists of all phased and non-phased (non-phased courses are identified by phase 0) CAD’s and POI’s. The getCourseMaster request will only respond with those course master records in an “Approved” status.
XML payload snipped. Namespace removed for readability.

…

<courseFilter>

<proponent>071</proponent>

<courseNumber>071 11D (R)</courseNumber>

<version>1.1</version>

</courseFilter>
…
7.3 CAD Filter

The CAD filter is a complex type consisting of proponent, course number, version, and phaseId which is used in the getCAD operation to uniquely retrieve the metadata for a single CAD record. A response to the getCAD request will consist of zero or one CAD element for a given phase or non-phase (identified by phase 0) of a course. The getCAD request will only respond with those CAD records in an “Approved” status.

XML payload snipped. Namespace removed for readability.

…

<cadFilter>

<proponent>071</proponent>

<courseNumber>071 11D (R)</courseNumber>

<version>1.1</version>

<phaseId>1</phaseId>

</cadFilter>
…
7.4 POI Filter

The POI filter is a complex type consisting of proponent, course number, version, and phaseId which is used in the getPOI operation to uniquely retrieve the metadata for a single POI record. A response to the getPOI request will consist of zero or one POI element for a given phase or non-phase (identified by phase 0) of a course. The getPOI request will only respond with those POI records in an “Approved” status.
XML payload snipped. Namespace removed for readability.

…

<poiFilter>

<proponent>071</proponent>

<courseNumber>071 11D (R)</courseNumber>

<version>1.1</version>

<phaseId>1</phaseId>

</poiFilter>
…
8 Business Rules
It is not the intent of this document to set triggering events and frequency of data to be pushed or pulled by either service implementer or client. These types of requirements need to be specified in their respective MOA or SIA.

8.1 CourseMaster Service Requests
1. The request shall comply with message constructs defined by WSIT and WS-I standards.

2. The service implementer may send delayed response messages for transmission during off peak hours.

3. The enterprise service shall only ‘put’ products in the “Approved” status.

4. The enterprise service shall only ‘put’ one product per message.

5. The enterprise service may send multiple phase records per course master.

6. MessageID of the TransactionID object shall be a UUID.
7. In the event of an error, refer to section 9 in this document.
8.2 CourseMaster Service Response
1. The response shall comply with message constructs defined by WSIT and WS-I standards.

2. Responses shall include the messageId of the request with an updated date time stamp indicating receipt of the data sent in the request message for put operations and supplied with the response data of a get operation.

3. In the event of an error refer to section 9 section in this document.

8.3 CourseMaster Service Objects

The following objects are not all inclusive of the CourseMaster Service rather serves as a high level break down of the major schema objects contained in the service for clarity.

8.3.1 Transaction Id Object

Refer to section 7 for details.

8.3.2 CourseMaster Object

There shall be only one course master object populated per message. The structure includes multiple phases of CAD and POI objects. Only officially ‘Approved’ products will be sent. If the course is not phased the phaseId will be populated with the value of 0. Refer to the CourseMaster-ws Specification for schema object details.
8.3.3 CAD Object

There shall be only one CAD object populated per message. Only officially ‘Approved’ products will be sent. If the course is not phased the phaseId will be populated with the value of 0. Refer to the CourseMaster-ws Specification for schema object details.
8.3.4 POI Object

There shall be only one POI object populated per message. Only officially ‘Approved’ products will be sent. If the course is not phased the phaseId will be populated with the value of 0. Refer to the CourseMaster-ws Specification for schema object details.
9 Error Handling

The service implementer of the “putCourseMaster” operation shall not throw the “CourseMasterFault” in attempts at processing the data after it has been successfully received.

Business rule violations shall throw the CourseMasterFault defined in the WSDL providing a description of the error in the base fault. Any other runtime errors shall be container thrown SOAP faults.
10 Sequence Diagrams

Each operation will have the same technical flow following WS-* specifications:
Operation:
getCourseMaster

getCAD

getPOI

getCourseList

[image: image22.png]
Operation:
putCourseMaster

putCAD

putPOI

[image: image23.jpg]
PAGE

